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The transformation theory for rotating frames presented in a previous paper 
(Strauss, 1974) is generalized by replacing the usual condition r -- R for 
coR < c (invariance of radius) by r = Rg(flR) so that r is now defined for all 
values of R, 0 ~ R ~ oo. This generalization does not affect the kinematic 
transformation {0, T} -+ {~cr~, {(r~} and the result group structure required by 
the theoretical constraints previously established, provided the old param- 
eter " r "  ( = R )  is now identified throughout with either r or R, for physical 
reasons it must be identified with R. The function g, which cannot be fixed 
by theoretical constraints, determines the degree of geometrical anisotropy 
in the rotating plane z = const. More specifically, since g enters the 
expression for the ratio C/D (circumference/diameter) its choice corresponds 
to the choice of a congruence definition for lengths in radial and tangential 
directions. While on this (purely geometrical) level g remains undetermined, 
it can be uniquely determined experimentally on the kinematic level, e.g., 
by observing in 27 ̀0 the motion of a free particle. Thus the supremacy of 
kinematics over geometry is explicated by a further instance. At the same 
time, special relativity theory (SRT) is shown to belong to the class of 
theories with theoretically unsolvable problems. 

1. I N T R O D U C T I O N  

In  a p r ev ious  p a p e r  (Strauss ,  1974), he rea f t e r  re fe r red  to  as I, a so lu t ion  

o f  the  t r a n s f o r m a t i o n  p r o b l e m  E ~ --> Y,~' ( iner t ia l  f r a m e  --> u n i f o r m l y  r o t a t i n g  

f r a m e )  was  p r e s e n t e d  wh ich  satisfies all t heo re t i ca l  cons t r a in t s  the re  es tab-  

l i shed a n d  w h i c h  is u n i q u e  u n d e r  the  usua l  c o n d i t i o n s  z = Z a n d  r = R 

( inva r i ance  o f  radius) ,  Z ,  R,  0 be ing  the  cy l indr ica l  c o o r d i n a t e s  in E ~ wi th  Z 

as axis o f  ro t a t i on .  In  the  p re sen t  p a p e r  t he  c o n d i t i o n  z = Z will  be  m a i n -  

t a ined  since the re  appea r s  to  be  no  r ea son  w h y  it  shou ld  be g iven  up,  b u t  t he  

i n v a r i a n c e  o f  the  r ad ius  wil l  n o t  be  d e m a n d e d ;  ins tead ,  we shall  cons ide r  t he  
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general case 

r = R g ~ a )  [fir =dr oJR/cl (1.1) 

where g is an unspecified function which of course must satisfy 

g(0) = 1. (1.2) 

The main reason for considering the general case (1.1) is that it provides 
a more general basis for discussing questions of  intrinsic geometry in the 
rotating plane: since the latter will depend on g, different choices of  g will 
correspond to different conventions (operationgl or coordinative definitions) 
and/or to different theoretical constraints going beyond those already 
established in I. This will also make it possible to consider some results of  
other authors to correspond to a particular choice of  g. 

Another more specific and more technical reason for considering case 
(1.1) is as follows. For r = R to be consistent with special relativity theory 
(SRT), the range o f r  has to be restricted to values less than ]e/oJl, i.e., r = R 
really means 

r = R for Ir < e 
r undefined for ]coR] /> c 

Such a definitional restriction of a nonperiodic variable appears to be rather 
odd and objectionable. Instead, one should expect 

r = finite for 0 < I Ro~I < e 
r = 0 or oo for IR~[ = e 
r = imaginary for [Ro~ I > e 

which, together with (1.2), would give the following constraints for the func- 
tion g: 

(i) g(0) = 1 (ii) g(1) = 0 or ~ (1.3) 
(iii) g(x) = imaginary for Ixl > 1 (iv) g ( - x )  = g(x) 

In addition one should demand that g be a monotonous function in the 
interval 0 ~< [x[ ~< 1. [The simplest functions satisfying these conditions 
appear to be g~(x) = (1 - x2)~1/2.] 

As mentioned above, the function g codetermines the intrinsic geometry 
in the rotating plane, or rather what is left of  it (geodesics and the ratio C/D). 
(A complete intrinsic geometry in the mathematical sense does not exist in a 
rotating plane, as shown in I.) This applies in particular to the ratio C/D 
(circumference/diameter, in intrinsic measure), which can be taken as a 
measure of  geometrical anisotropy in the rotating plane since it compares a 
length in tangential direction with a length in radial direction and thus involves 
an implicit definition of congruence for lengths in these different directions. 
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I f  we define "geometrical anisotropy in the rotating plane," henceforth 
denoted by a, in such a way that it is zero for the Euclidean plane, we can put 

=al CfirD - 1 (1.4) 

We then have c~ = ~: - I in I and c~ = x/g - 1 in the generalized theory. In 
view of existing misinterpretations it should be pointed out that geometrical 
anisotropy does not imply intrinsic curvature: the latter is given by the 
appropriate curvature tensor. In our theory it is zero independently of  g 
everywhere on the surface of a rotating disk, as it ought to be. 

2. THE GENERALIZED T H E O R Y  

2.1. The Identification of the Old Parameter r. An examination of the 
two-dimensional transformation theory presented in I shows that it is not 
affected by the generalization (1.1) provided the radial parameter r occurring 
in the transformation formulas is identified throughout with either R or 
r = g(/3R)R. Thus from the purely formal point of  view there exist two 

possible generalizations of  the theory presented in I, both having the same 
group structure. The decision must therefore be based on physical arguments. 

There are two compelling physical reasons for identifying the old 
parameter  " r "  with R rather than with r. The first of  these reasons follows 
from the theoretical constraint C2 in I concerning the local time metric in 
the rotating frame in relation to the interial time metric as given by the 
expression 

U-'t dT / ar = a~c. = o 

As the local time metric cannot depend on the geometrical function g, we 
have to equate the above expression to K~71 (and not to K71). Besides, it is this 
value which is experimentally established in e.xperiments with high-energy 
particles in circular accelerators. (From a more general view, this is an 
instance of, or an argument for, the priority of  chronometry C2 from I now 
reads 

( dt(Tp~ 
--d~}ar=ae{,,= ~ = Ks ~ (2.1) 

with 

KR =at [1 -- /3~ 21-1/2 (2.2) 

5~ =,r ,oR/c (2.3) 

The second reason for identifying the old parameter  " r "  with R rather 
than with r = gR is the requirement of  time orthogonality which is a necessary 
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condition for the spatial coordinates to have geometrical meaning. Since 

i- 2 [ a 0 \ 2  2 [ ~ T \  ~] 

+ 2 K - ~  0-7 - c -if[ ~-~ st~ dt  (2.4) 

the condition for time orthogonality reads 

R2/c orar/a0a0 at/a__0 
= at - f f S / - ~  -~ = 8u~/at = "r"2/cZ (2.5) 

the last two equations following from I, Section 2.16. [The superscript (r) 
has been omitted.] 

Thus the solution of the transformation problem w o __~2To~ (inertial 
flame ~ cylindrical subframe rotating with uniform angular speed ~o with 
respect to y o) now reads 

z = Z  

r = g(flR)R (2.6) 
~(r) = KR[0 __ oJZ] 

t m = Kn[--(~R2flo)O + T] 

or, using the inverse, 

Z = z  

R = G(13T)r (2.7) 
0 = ,R[t~') + cot m] 

where the second line is the solution of the second equation in (2.6) for R, or 

G(I~r) = g(flxO- ~ (2.8) 

Hence the four-dimensional line element is given by 

dS  u = dz 2 + (G + flr(~) = dr 2 + G2r 2 du am2 - c 2 dt m= (2.9) 

where t~ is the derivative of G with respect to its argument/~, = r~o/c. 
Omitting the first line in (2.6) we may write the transformation Er  c~ + -  E ~ 

in the form 
{r, t$ ~r~, t (~} = . . t l~~ O, T}  (2.10) 

where rows have been written instead of columns and where 

Jl~ ~ =aI ( g o  ~ ~0ao) (2.11) 
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with 

and 
g~o =~r g ( ~ . )  = g(~%) ~% =~ ~ 2 R / c  (2,12) 

=al o 1 

Similarly the inverse transformation (2.7) may be written in the form 

{R, 0, T} = ~'fA{r, ~(~), t (r)} (2.14) 
where (T 0) 

./r =a~ ~oA (2.15) 

G ~ =~ G(~r) ~~ =~ ~ ~  
with 

and 
o [ 1 co o~ 

~o~ =~, ~ . , o o ~ ,  o ~ I = ~ ( ~ '  ~ o )  (2.17) 
\PAR/WA 

In these formulas the rotating frame E A is characterized by its angular 
velocity wff with respect to the fundamental frame E ~ while its cylindrical 
subframe Er A is characterized by the subscript r or the corresponding R, this 
notation being the same as in I. 

2.2. The General Uniform Rotation Equivalence. The transformation 
connecting two uniformly rotating subframes EA~ and 2 ~  is given by the 
matrix operator 

\ 0  ['A~176 RA 0 ) AB ~,AO ~,O~ [sR~ r R- ~ (2.18) 
L/~rg7 B ~ ~'~rA ~'~TB ~ B 

AB ~RARB 
from which it is easily shown that these transformations form a group (cf, I, 
Section 4). 

The angular velocity of E A with respect to the subframe Er~ works out 
to be 

oJ~ - ~A (2.19) 
wAB = 1 --  WAO.JBRB2C--2 

which corresponds to I, equation (4.4). Hence 

~off # - ~ B  A unless Ra = Rs (2.20) 

2.3. The Rotating Cylinder Subgroup. The condition RA = RB . . . .  
= R defines the rotating cylinder subgroup and the corresponding equiva- 
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lence class of subframes. The transformation formulas are the same as in I, 
with " r "  replaced by R. The relation between the intrinsic radii reduces to 

r A = [g(flA)/g(~B) ]rB (2.21) 
with 

or, equivalently 

with 

fix =di o~xR/c 

r A = [G(#~)IG(#A)]rB (2.22) 

(2.25) 
with 

~ =as oJRJc (2.26) 
or, equivalently, by 

rl = [G(I~2)/G(I~I)[R1/R2]r2 (2.27) 
with 

2.4. The Rotating Disk Subgroup. This subgroup is defined by the 
condition o~A = wB . . . . .  oJ. Different intrinsic radii will again be dis- 
tinguished by different numerical subscripts, as in I. The transformation 
formulas are again the same as in I, with " r "  replaced by R. In particular, 
we have the invariant 

Ki- I~(D = K~ I~(2) = t$ (2.24) 
with 

K71 = [1 - (~oR~/c)2] 1/2 

The relation between the intrinsic radii is given by 

rl = [g(fl l) /g(~2)][Rz/R2]r2 

l~ =at oJrdc (2.28) 

As these formulas follow from the definitions they are mathematical identities 
rather than transformation formulas. In particular, they do not enable an 
observer on the rotating disk to determine its angular velocity with respect to 
Z ~ as formula (2.24) does. 

2.5. The Geometry on the Rotating Disk. On first sight, one may expect 
that the noninvariance of the radius essentially affects the geometry on the 

1~x =at ~~ (2.23) 
Note that equation (2.22) does not contain R; but it still contains a reference 
to the fundamental frame X ~ unless the bracketed expression turns out to be a 
function of the relative angular velocity cob A. This reference to X ~ distinguishes 
the rotating cylinder equivalence of the present theory from that of the former, 
but it does not prevent the subframe Zn ~ from belonging to this equivalence 
class. Yet it does underline once more the distinguished role of the funda- 
mental (inertial) frames in special relativity. Note that here and in the follow- 
ing the superscript o referring to X ~ is dropped. 
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rota t ing disk. N o w  a global geometry  on the ro ta t ing  disk does not  exist, as 
pointed out  in I. We may,  however,  consider the two geometrical  remnants  
a lready considered in I, viz., the geodesics and the ratio C / D  where C and D 
are the intrinsic measures  of  circumference and diameter ,  respectively. 

As to the geodesics, we have to start  f rom the expression for  the four-  
dimensional  interval (2.9), i.e., 

d S  2 = dz  2 + [G(~) + rGr] 2 dr  2 + (rG) 2 dv ~(~)~ - c 2 d t  2 (2.29) 

which yields 
d~ 2 = [G + rG~] 2 dr ~ + [rG] 9" dr9 ~)2 (2.30) 

Here,  G,  is the part ial  derivative of  G with respect to r. 
Proceeding in the same way as in I we obtain 

and 

Hence 

or  

with 

~(r) = a G -  2 r -  2 

= (G + rG~)-l[1 - ~2G-2r-21112 

dv~(r)/dr = ~ ) / ~  = c~-lXZ[1 - X 2 ] - I / 2 ( G  . + rGO 

d# (~) = - [1 - X~] -1/2 d X  

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

X =dr  o~G- l r -  1 

Hence,  by  integration,  

v ~<r) = v%') + arcsin ( -  ~G-  l r -  1) 

= v% r> - arccos [1 - a 2 G - 2 r - 2 ]  1/2 

Changing the integrat ion constant  by  zr/2 we can write instead 

t9 ~r) = v% r) + arccos ( a G - l r  -1)  (2.38) 

which, apar t  f rom the factor  G-1 ,  agrees with (I.A.21). Thus,  since Gr = R ,  

(2.38) results f rom equat ion (A.21) of  I by again replacing " r "  by R, as might  
have been anticipated. However ,  since G is a funct ion of/~ = ~or/e, the geo- 
desics are no longer straight lines and,  moreover ,  depend on the angular  
velocity o~, except for  the radial  lines (c~ = 0). 

No te  tha t  our geodesics equat ions are still different f rom those given by 
Moller  (1952) in terms of  his nonmetr ica l  coordinates.  

As to the C/D ratio, we conclude f rom (2.24) that  the circumference of  a 
circle with radius r~ has the intrinsic measure  

Ci = ~2~rRi (2.39) 

as in I. Since D~ = 2ri is the intrinsic measure  of  the diameter,  we obtain  

C, /D,  = [,qG(/~,)],r = [,q/g(/3,)]rr (2.40) 
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Note that the use of R~ (instead of r0 in (2.39) is not only in line with the 
general replacement procedure [ " r "  -+ R] established in Section 2.1, but also 
in line with the fact that the elongation factor g applies only to measures in 
the radial direction. 

Finally, we may compute the Riemann curvature tensor for the rotating 
disk surface. After a somewhat tedious calculation one obtains 

R1212 = 0 R = 0 (2.41) 

where the indices refer to r and v ~(T), respectively. Thus th e rotat ing disk surface 

is everywhere  uncurved, independently of the choice of g. In connection with 
the two previous results this means that the choice of g affects only the 
"'global geometry" on the disk [geodesics and C/D ratio] which has no definite 
physical meaning since a global geometry in the mathematical sense does not 
exist in a rotating frame as shown in I. [Note that ~(r) is a local variable; if 
we had used instead the global  nonmetrical variable ~ defined by (2.24) we 
would have obtained a nonvanishing curvature tensor (cf. Appendix).] 

2.6. Timel ike  Geodesics:  The Experimental  Determination of  g. In 
contrast to the spacelike geodesics considered above, timelike geodesics have 
a definite physical meaning since they are the world lines of free test particles. 

As an instance we consider the path in E ~ of a free particle moving with 
respect to Zo according to the equations 

(i) Z = 0 (ii) 0 = 0 (iii) R = V T  (2..42) 

Its motion with respect to Z ~ is then given by 

(i) z = 0 (ii) ~(~) + oJt (') = 0 (iii) rG = V ~ l t  ~ (2.43) 

This yields the track equation 

~(~) = - K~Go~r / V 

and 

(i) ~(" = -~o  

(2.44) 

(ii) f = V(GtcR)-I[1 - KR2/3R2]-l[1 + G-IG'I~r] -1 

(2.45) 

Thus, in principle it is sufficient to observe the track of a free particle in Z ~ 
in order to determine the function G and hence g. 

3. CONCLUDING REMARKS 

In conclusion it should be emphasized that the theory of rotating frames 
here presented is a genuine extension of standard relativity, although its 
essential features are uniquely determined by the theoretical constraints listed 
in I. Hence it is not surprising that the function g, which determines the 
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degree o f  geometrical anisotropy in the rotat ing plane, remains theoretically 
undetermined. 

There is o f  course another  kind of  anisotropy in a rotat ing frame that  is 
present also in the prerelativistic theory, viz., the inequivalence of  opposite 
tangential directions. This inequivalence simply results f rom the fact that  the 
angular velocity is an antisymmetric tensor and the angular speed m not  a 
scalar but a pseudoscalar.  The questions connected with a relativistically 
correct  or  at least acceptable treatment o f  this k i n e m a t i c  a n i s o t r o p y  will be 
studied in a for thcoming paper. 

A P P E N D I X :  R I E M A N N  C U R V A T U R E  IN  T H E  R O T A T I N G  P L A N E  

TABLE A1. In the following we give a comparative survey of the calculations concern- 
ing the Riemann curvature in the rotating plane. Note that the coordinates used in 

Strauss I, II are metrical, while those used in Maller (1952) are nonmetrical. 

Strauss I Strauss II Moller (1952) 

da 2 dr 2 + r2d~  (*)2 [rG]12dr 2 + ( rG)2d#  ~)2 dR  2 + (~R )2 d #  ~ 

W~ 1 [rG]~ ~ 1 
~ r ~ (rG)~ (~R) ~ 

Y , .~  =a~ �89 + ~.,~ - y~.,) 

F1.11 0 [rG]l[rG],r 0 
F1.12 0 0 0 

F1,22 -- r - rG[rG], - K R[~c R ]R 
~2.11 0 0 0 

~2.12 r rG[rG]~ KR[KR]R 
Y2,22 0 0 0 

F~z - d~ g F~.kl 

r~2 
0 [rG]7 l[rG]~, 0 

- r - [rG]7 l rG - KR[KR]R 
r -  I [rG]~(rG) - 1 (~R) - I[~R]R 

R1212 = �89 + F1~1~z.22 -- 1-'~2F2.12 

R 0 0 6,~4/~2R -2 
R1212 0 0 3K6/32 
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